PROTECTING THE ENVIRONMENT FROM GREENHOUSE GASES USING AN AUTONOMOUS PHOTOTHERMAL PLANT

##article.authors##

  • M.N. Tursunov Physical–Technical Institute
  • Kh. Sabirov Physical–Technical Institute
  • U.R. Kholov Physical–Technical Institute

##semicolon##

autonomous photovoltaic station, photoelectric battery, photothermal battery, CO2, electricity, traditional fuel.

##article.abstract##

In the development of the country’s economic strategy, the problems of energy, environmental protection and ecology play a major role. Most of the conventional fuel stations have a negative impact on the environment. One of the ways to solve the problem of environmentally friendly energy production is the use of renewable energy sources (photoelectric batteries). The article examines the environmental efficiency of using traditional and renewable energy sources based on the geographical location of our country. In the study, it was determined that 2460 kWh of electricity can be produced for one year using a 0.7 kW autonomous photothermal station. The amount of CO2 emitted into the environment by autonomous use of 0.7 kW photothermal batteries was studied in comparison with statistical data. It was determined based on statistical data that 0.7 tons of conditional fuel is needed to generate 2460 kWh of electricity. If a 0.7 kW autonomous photothermal station is used, it is possible to protect nature from the amount of CO2 released as a result of the use of 0.73 tons of oil and gas products. Effective use of renewable energy production systems saves traditional fuels and helps protect the environment from various exhaust gases. Implementation of the proposed efficiency criterion will facilitate the transition to "green" energy and economy on the most optimal trajectory of their improvement by sorting the planned activities in terms of efficiency and implementation priority. The improvement of photovoltaic batteries in energy systems was proposed as the most promising source of renewable energy sources. The use of improved photothermal batteries based on photovoltaic batteries is effective, which reduces fuel consumption and the amount of released CO2.

##submission.citations##

Пенджиев А.М. “Экологические проблемы энергетики и роль альтернативных источников энергии в Центрально-азиатском регионе”, Альтернативная энергетика и экология, ISJAEE, 2012, № 5-6. с. 76-91.

Капица С.П. “Энергетика и экономика человечества”, Альтернативная энергетика и экология, ISJAEE, 200, № 9, с. 10-12.

Ўзбекистон Республикаси Президентининг 2022 йил 2 декабрдаги ПҚ-436-сонли “2030 йилгача Ўзбекистон Республикасининг “яшил” иқтисодиётга ўтишига қаратилган ислоҳотлар самарадорлигини ошириш бўйича чора-тадбирлар тўғрисида” ги қарори.

Узоқов Ғ.Н. “Яшил энергетика” – барқарор иқтисодий тараққиёт асоси, Энергия ва ресурс тежамкор инновацион технологияларни ривожлантиришнинг долзарб муаммолари, Республика илмий-амалий анжумани, Қарши 2022, 23-24-сентябрь 276-279-б.

Schultz, H.S.; Carvalho, M. Design, “Greenhouse Emissions, and Environmental Payback of a Photovoltaic Solar Energy System”, Energies 2022, 15, рр. 2-24.

Al-Mulali U, Che Sab CNB. Electricity consumption, CO2 emission, and economic growth in the Middle East. Energy Sources B Energy Econ Plan Policy, 2018, Vol 5, pp. 257-263.

Anderson, T.R.; Hawkins, E.; Jones, P.D. “CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Calendar to today’s Earth System Models”, Endeavour 2016, 40, pp. 178–187.

Arshian Sharif, Mita Bhattacharya, Sahar Afshan, Muhammad Shahbaz. Disaggregated renewable energy sources in mitigating CO2 emissions: new evidence from the USA using quantile regressions, Environmental Science and Pollution Research, 2021, Vol 28, pp. 57582–57601, doi.org/10.1007/s11356-021-13829-2.

Ўзбекистон Республикаси Президентининг 2023 йил 16 февралдаги ПҚ-57-сон “2023 йилда қайта тикланувчи энергия манбаларини ва энергия тежовчи технологияларни жорий этишни жадаллаштириш чора-тадбирлари тўғрисида” ги қарори.

https://globalsolaratlas.info

Turconi, R.; Boldrin, A.; Astrup, T. “Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations”, Renew. Sustain. Energy Rev. 2013, 28, рр. 555–565.

Пенджиев А.М. “Экологические проблемы энергетики и роль альтернативных источников энергии в Центрально-азиатском регионе”, International Scientific Journal for Alternative Energy and Ecology № 04 (108) 2012, с. 132-146.

Гинзбург В.А., Нахутин А.И., Вертянкина В.Ю., Говор И.Л., Грабар В.А., Зеленова М.С., Имшенник Е.В., Лытов В.М., Полумиева П.Д., Попов Н.В., Трунов А.А. “Методические рекомендации расчет эмиссии парниковых газов и подготовка отчетности для стран Центральной Азии (с учетом Парижского соглашения)”, Москва 2021, 272 с.

С.К. Шогучкаров, С. Хушбаков, Ш. Ш. Рустамова, Т. Р. Жамолов, Ю.М. Курбанов, М. Атоева. “Исследование энергетических и экологических показателей фотоэлектрической станции соединенной с локальной электрической сетью”, международная научно-техническая конференция “Тенденции развития альтернативной и возобновляемой энергетики: проблемы и решения” 17-18-мая, 2021, с. 355-361.

Турсунов М.Н., Сабиров Х., Холов У.Р., Шоғўчқоров С.Қ. “Фотоэлектрик ва фотоиссиқлик батареяларини техник-иқтисодий кўрсаткичларини баҳолаш” Журнал “Проблемы энерго- и ресурсосбережения”, Ташкент, 2022 №4, с. 253-258.

##submission.downloads##

Taqdimot chop etildi

2023-09-10