QAYTA TIKLANUVCHI ENERGIYA MANBALARIDA ISHLOVCHI ELEKTR STANSIYA JIHOZLARINING OPTIMAL TARKIBINI TANLASH

##article.authors##

  • Gayibov, Tulkin Shernazarovich Toshkent davlat texnika universiteti
  • Toshev Tajiddin Ungboyevich Qarshi muhandislik-iqtisodiyot instituti

##semicolon##

optimallashtirish, matematik model, algoritm, avtonom tizim, gibrid tizim, fotoelektr stansiyasi, shamol elektr stansiyasi, quyosh moduli, shamol agregati, kapital xarajat, ishlatish xarajatlari.

##article.abstract##

Hozirgi inson faoliyatining barcha sohalarida elektr iste’molining yuqori
suratlarda oshib borishi, uglevodorod yoqilg‘isi zahirasining cheklanganligi, shuningdek, energetikaning ekologik muammolarini dolzarbligi sharoiti qayta tiklanuvchan energiya resurslari,
birinchi navbatda, quyosh va shamol energiyasida ishlovchi elektr stansiyalarini qurish va ishlatishni
yanada samarali usullarini ishlab chiqish va joriy etishni talab etadi. Bunday turdagi energiya
resurslari asosida ishlovchi elektr stansiyalariga ega bo‘lgan avtonom gibrid tizimlarni
loyihalashtirish, jumladan, asosiy jihozlarning optimal tarkibini tanlashni ko‘zda tutadi. Hozirgi
davrda ushbu masalani yechishning bir qator usullari mavjud bo‘lishiga qaramasdan, ularni barcha
cheklovchi va ta’sir etuvchi faktorlarni e’tiborga olish, optimallashtirishning aniqligini oshirish
orqali takomillashtirish dolzarb masala hisoblanadi. Ushbu ishda tarkibida quyosh va shamol
stansiyalari hamda akkumulyator batareyalari mavjud bo‘lgan avtonom gibrid tizimlarda
jihozlarning optimal tarkibini barcha omillarni e’tiborga olib tanlash masalasining samarali
matematik modeli va uni yechish algoritmi taklif etilgan. Taklif etilgan model va optimallashtirish
algoritmining samaradorligini tadqiqi natijalari keltirilgan. Amalga oshirilgan hisoblash
tajribalarining natijalari asosida avtonom gibrid tizimda jihozlarning optimal tarkibini tanlashning
taklif etilgan model va algoritmi yaxshi hisoblash sifatlari va yuqori hisoblash aniqligiga ega
ekanligi aniqlangan. 

##submission.citations##

Wang, Zekun & Jia, Yan & Yang, Yingjian & Cai, Chang & Chen, Yinpeng. (2021). Optimal

Configuration of an Off-Grid Hybrid Wind-Hydrogen Enery System: Comparison of Two

Systems. Energy Engineering., 1641-1658.

SUN Qiana, MA Jianweia, SHE Yanjieb, ZHANG Jingchaoc, GU Bod, ZHANG Zichaoe.

(2019). Optimal Configuration of Standalone Wind–Solar–Storage Complementary

Generation. Journal of Power Technologies 99 (4) , 231-236.

Zhang, Junli & Wei, Huashuai. (2022, August 24). A review on configuration optimization of

hybrid energy system based on renewable energy. Frontiers in Energy Research, pp. 01-15.

Lanre Olatomiwa. (2016). Optimal configuration assessments of hybrid renewable power

supply for rural healthcare facilities. Energy Reports, 141-146.

Mas’ud, A.A.; Al-Garni, H.Z. (2021). Optimum Configuration of a Renewable Energy System

Using Multi-Year Parameters and Advanced Battery Storage Modules: A Case Study in

Northern Saudi Arabia. Sustainability, 13, 5123.

Freire-Gormaly, M, & Bilton, A,M. (2015, Avgust 2-5). Optimization of Renewable Energy

Power Systems for Remote Communities. Proceedings of the ASME 2015 International Design

Engineering Technical Conferences & Computers and Information in Engineering Conference

IDETC/CIE 2015 Boston, Massachusetts, USA, p. 11.

Farzad Ghayoor, Andrew G. Swanson, Hudson Sibanda. (2021). Optimal sizing for a gridconnected hybrid renewable energy system: A case study of the residential sector in Durban,

South Africa. Journal of Energy in Southern Africa 32(4):, 11-27.

Tristar. (2014). TriStar MPPT Maximum Power Point Tracker.

TRISTAR MPPT 600V. (2022). Solar Battery Charger with TrakStarTM Maximum Power

Point Tracking Technology.

TriStar MPPT 600V TM with Off-grid / Grid-tie Transfer Switch. (2017). “Solar Battery

Charger with TrakStarTM Maximum Power Point Tracking Technology.

Christoph Kost, Shivenes Shammugam, Verena Fluri, Dominik Peper, Aschkhan Davoodi

Memar, Thomas Schelegl. (2021). Levelized Cost of Electricity Renewable Energy

Technologies. Germaniya.

Christoph Kost, Shivenes Shammugam, Verena Julch, Huyen-Tran Nguyen, Thomas Schelegl.

(2018). Levelized Cost of Electricity Renewable Energy Technologies. Germaniya.

J. White, K. Case, and D. Pratt. (2010). Principles of Engineering Economic Analysis.

Hoboken, NJ: Wiley Higher Education.

Lagerveld S., Röckmann C., & Scholl M. (2014). A study on the combination of offshore wind

energy with offshore aquaculture. IMARES Report C056/14. Retrieved August 2, 2016, from

http://edepot.wur.nl/318329.

Felipe Sabadini, Reinhard Madlener. (2021). The economic potential of grid defection of

energy prosumer households in Germany. Anvances in Applied Energy.

Гайибов Т. (2020). Выбор оптимальных параметров солнечных фотоэлектрических

станций и аккумуляторов в распределительных электрических сетях. Тенденции

развития современной физики полупроводников: проблемы, достижения и перспективы

(pp. 237-242). 2020: НИИ Физика полупроводников и микроэлектроники при

Национальном университете Узбекистан.

Gayibov T.Sh., Fayziyev M.M., Toshev T.U. (2022). Tarkibida qayta tiklanuvchan energiya

manbalarida ishlovchi elektr stansiyalari mavjud bo‘lgan elektr energetika tizimlarining

rejimlarini optimallash. Инновацион технологиялар, 26-29.

T.Sh. Gayibov, T.U. Toshev. (2023). Аvtonom quyosh fotoelektr tizimlarining tarkibini

optimallashtirish. Energiya va resurs tejash muammolari, 292-298 b.

Gayibov T.Sh., Toshev T.U. (2023). Quyosh Fotoelektr stansiyalari elementlarning optimal

tarkibini tanlash masalasining matematik model va uni yechish algortimi. Инновацион

технологиялар, 13-21.

Toshev T.U., Tuxtayev B.B. (2023). Quyosh Fotoelektr tizimlarini elektr ta’minoti tarmog‘iga

ulanish holati. Kelajak samarali energetikasi: muammolar va echimlar (pp. 351-354). Farg‘ona:

Farg‘ona politexnika instituti.

##submission.downloads##

Taqdimot chop etildi

2024-12-30