QAROR DARAXTI YORDAMIDA AVTOMASHINA OQIMINI BASHORAT QILISH

##article.authors##

  • Rasulmuxamedov Maxamadaziz Maxamadaminovich Toshkent davlat transport universiteti
  • Tashmetov Komoliddin Shuxrat oʻgʻl Toshkent davlat transport universiteti
  • Tashmetov Timur Shuxratovich Toshkent davlat transport universiteti

##semicolon##

Transport oqimi, tirbandlik, bashorat, algoritm, model, qaror daraxti, mashinani oʻrgatish modellari, determinatsiya koeffitsiyenti, entropiya.

##article.abstract##

Ushbu ishda Toshkent shahri halqa yoʻlining Bogʻishamol koʻchasi bilan
kesishgan chorrahada transport oqimini oʻrganishga qaratilgan. Tadqiqotning obyekti sifatida
transport oqimi va uning dinamik koʻrsatkichlari, yaʼni intensivligi, zichligi va tezlik kabilar tadqiqot
uchun oʻrganilgan va qayta ishlangan. Tadqiqotda qoʻyilgan asosiy masala, qaror daraxti
yordamida transport oqimini bashorat qilish va buning asosida transport harakatini boshqarish
masalalari olingan. Shu bilan birga ushbu ishda yoʻl harakatiga toʻsqinlik qiluvchi omillar tahlili va
bu omillarni kamaytirish boʻyicha fikrlar keltirilgan. Tahlil natijalarida hozirgi kunda jadal
rivojlanib kelayotgan yoʻnalishlarga alohida urgʻu berilib, bunda mashinani oʻrgatish, neyron
tarmoqlari va intellektual transport tizimlari kabi texnologiyalarni transport sohasiga tobora kirib
kelayotgani aniqlangan. Bu yoʻnalishlarning ichidan mashinani oʻqitish yoʻnalishining algoritmi,
usuli va modellari tahlil qilingan. Qilingan tahlillar shuni koʻrsatdiki, qaror daraxti, tasodifiy oʻrmon
va gradient boosting kabi modellar transport oqimini bashorat qilishda keng qoʻllanilishi maʼlum
boʻldi. Ushbu ishda qaror daraxti yordamida ham Toshkent halqa yoʻli va Bogʻishamol koʻchasining
yoʻllardagi transport oqimini bashorat qilish modeli yaxshi natijalarni koʻrsatdi. Bu koʻrsatkichni
baholashda determinatsiya koeffitsiyenti qoʻllanildi va uning koʻrsatkichi 92% ni koʻrsatdi. Bu
bashorat uchun yaxshi koʻrsatkich ekanligi aniqlandi.

##submission.citations##

Alajali, W., Zhou, W., & Wen, S. (2018). Traffic flow prediction for road intersection safety.

In 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted

Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet

of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), (pp. 812-820).

Alajali, W., Zhou, W., Wen, S., & Wang, Y. (2018). Intersection traffic prediction using

decision tree models. Symmetry, 386.

Babaei, M., & Behzadi, S. (2023). Spatial Data-Driven Traffic Flow Prediction Using

Geographical Information System. Journal of Soft Computing in Civil Engineering.

Crosby, H., Davis, P., & Jarvis, S. A. . (2016). Spatially-intensive decision tree prediction of

traffic flow across the entire UK road network. In 2016 IEEE/ACM 20th International

Symposium on Distributed Simulation and Real Time Applications (DS-RT), (pp. 116-119).

Hou, Y., Edara, P., & Sun, C. (2014). Traffic flow forecasting for urban work zones. IEEE

transactions on intelligent transportation systems, 1761-1770.

Irawan, K., Yusuf, R., & Prihatmanto, A. S. (2020). A survey on traffic flow prediction

methods. In 2020 6th International Conference on Interactive Digital Media (ICIDM), (pp. 1-

.

Leshem, G., & Ritov, Y. A. (2017). Traffic flow prediction using adaboost algorithm with

random forests as a weak learner. International Journal of Mathematical and Computational

Sciences, 1-6.

Liu, Y. &. (2017). Prediction of road traffic congestion based on random forest. In 2017 10th

International Symposium on Computational Intelligence and Design (ISCID), 361-364.

M. Rasulmukhamedov, K. Tashmetov, T. Tashmoetov. (2023). Method of dertermining traffic

flow. Scientific and Technical Journal of NamIET, 208-216.

Meena, G., Sharma, D., & Mahrishi, M. (2020). Traffic prediction for intelligent transportation

system using machine learning. In 2020 3rd International Conference on Emerging

Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE),

pp. 145-148.

Prasad, K. S. N., & Ramakrishna, S. (2014). An efficient traffic forecasting system based on

spatial data and decision trees. Int. Arab J. Inf. Technol., 186-194.

Rasulmuhamedov M. M., Tashmetov K. Sh., Tashmetov T. Sh. (2023). Models used in the

analysis of transport flows. Transportda resurs tejamkor texnologiyalar, (pp. 111-121).

Toshkent, Uzbekiston.

Rasulmuhamedov M.M., Tashmetov K.Sh., Tashmetov T.Sh. (2024). Zamonaviy transport

tizimlarida transport oqimlarini. Fan va texnologiyalar taraqqiyoti jurnali, 4-9.

Rasulmuxamedov Maxamadaziz Maxamadaminovich va boshqalar. (2024). Oʻzbekiston

Dasturiy mahsulotga guvohnoma №. DGU 35986.

Rasulmuxamedov Maxamadaziz Maxamadaminovich va boshqalar. (2023). Oʻzbekiston

Dasturiy mahsulotga guvohnoma No. DGU 32609.

Tamir, T. S., Xiong, G., Li, Z., Tao, H., Shen, Z., Hu, B., & Menkir, H. M. (2020). Traffic

congestion prediction using decision tree, logistic regression and neural networks. IfacPapersOnline, 512-517.

Wang, Y. Z. (2020). Short term traffic flow prediction of urban road using time varying filtering

based empirical mode decomposition. Applied Sciences, , 20-38.

Xia, Y., & Chen, J. (2017). Traffic flow forecasting method based on gradient boosting decision

tree. In 2017 5th International Conference on Frontiers of Manufacturing Science and

Measuring Technology (FMSMT 2017), pp. 413-416.

Расулмухамедов М.М., Ташметов К.Ш. (2024). Модель машинного обучения для

прогнозирования транспортных потоков: дерево решений. Вычислительные модели и

технологии, (pp. 188-191). Ташкент.

Расулмухамедов, М. М., & Ташметов, К. Ш. (2023). Оптимизация управления

транспортным потоком на перекрестках с помощью нейронной сети. Интеллектуальные

технологии на транспорте, (S1 (35-1)), 92-96.

##submission.downloads##

Taqdimot chop etildi

2024-12-26