PARVOZLAR INTENSIVLIGINI OSHISHI SHAROITIDA HAVODAGI HARAKATNI BOSHQARISH JARAYONINI MODELLASHTIRISH MASALALARINING TAHLILI

##article.authors##

  • Shukurova Saboxat Muratdjanovna Toshkent davlat transport universiteti
  • Rustamov Nozimjon Samariddin o‘g‘li Toshkent davlat transport universiteti

##semicolon##

havodagi harakatumumiy vergul ro'yxat seperatori havodagi harakatni boshqarishumumiy vergul ro'yxat seperatori havo kemasiumumiy vergul ro'yxat seperatori oqimumumiy vergul ro'yxat seperatori obyektumumiy vergul ro'yxat seperatori subyektumumiy vergul ro'yxat seperatori transportumumiy vergul ro'yxat seperatori uchish-qo‘nish yo‘lagiumumiy vergul ro'yxat seperatori harakat yo‘lagiumumiy vergul ro'yxat seperatori samaradorlikumumiy vergul ro'yxat seperatori tarmoqumumiy vergul ro'yxat seperatori topologiya

##article.abstract##

Havodagi harakatni boshqarish (HHB) jarayoni havo hududida havo
kemalarining xavfsiz va samarali ishlashini ta’minlaydigan murakkab va dinamik tizimdir. HHB
jarayonida uchuvchilar, dispetcherlar, aeroportlar, aviakompaniyalar va tartibga soluvchilar kabi
turli subyektlar ishtirok etadi, ular turli tizimlar va protseduralar orqali o‘zaro ta’sir qiladi va
muvofiqlashtiradi. HHB jarayoniga ob-havo, yo‘l harakati, texnik sharoitlar, inson omillari va
boshqalar kabi ko‘plab omillar ta’sir qiladi. HHB jarayoni havo qatnovining ortishi, texnologik
innovatsiyalar, atrof-muhit qoidalari va xavfsizlikga nisbatan talabning ortishi kabi o‘zgarishlar va
noaniqliklarga duchor bo‘ladi.
Mazkur maqoladan ko‘zlangan asosiy maqsad parvozlar intensivligini oshirishda HHB
jarayonini modellashtirishga har tomonlama va integratsiyalashgan yondashuvni ta’minlashdan
iborat. Maqolada qarorlarni qabul qilish va havodagi harakatni boshqarish siyosatini ishlab
chiqishni qo‘llab-quvvatlash uchun taklif qilingan modellarning qo‘llanilishi va foydaliligi
ko‘rsatilgan. Maqolada, jumladan, hozirgi HHB jarayonining muammo va cheklovlari o‘rganilgan
hamda kelajakdagi tadqiqot va ishlanmalar yo‘nalishlari taklif etilgan.

##submission.citations##

Zanin M., Lillo F., Patelli A. Structure and properties of the European Air Transport Network:

a complex network analysis. // Journal of Transport Systems. 2013. - Vol. 17, No. 4. - pp. 180-

A.A. Akhmedov. Modeling of the air traffic control process with an increase in the intensity

of flights. - Tashkent: Tashkent State Technical University, 2023. - 180 p.

Wang Z., Zhang Y., Du G. Analysis of the resilience of Chinese air traffic management

network using complex network theory. // Journal of Physics A: Mathematical and

Theoretical. 2016. - Vol. 49, No. 22. - Article 225101.

Zhang R., Li M., Wang H. Multi-objective optimization of US air traffic management network

based on complex network theory. // Expert Systems with Applications. 2019. - vol. 115. -

pp. 462-474

Rytter A., Skorupski J. The concept of initial air traffic situation assessment as a stage of

medium-term conflict detection. Procedia Eng. 2017, 187, pp. 420–424.

Gomes H.M., Barddal J.P., Enembreck F., Bifet A. A survey on ensemble learning for data

stream classification. ACM Comput. Surv. 2017, 50, pp. 1–36.

Mehmood Z., Asghar S. Customizing SVM as a base learner with adaboost ensemble to learn

from multi-class problems: A hybrid approach adaboost-MSVM. Knowl. Based Syst. 2021,

, 106845.

Rodríguez-Sanz Á., Andrada L.R. Managing airport capacity and demand: An economic

approach. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1226, 012024

Angélica Sousa da Mata. Complex Networks: a Mini-review. Brazilian Journal of Physics,

Vol. 50, 2020, pp. 658-672. DOI: 10.1007/s13538-020-00772-9

Zhiyong Sun, Xiangyu Meng, Brian D.O. Coordination and Control of Complex Network

Systems With Switching Topologies: A Survey. IEEE Transactions on Systems Man and

Cybernetics Systems. 2020, pp. 1-16. DOI: 10.1109/TSMC.2019.2961753

Lun Li. Topologies of Complex Networks: Functions and Structures. California Institute of

Technology. 2005, doi: 10.7907/9G3P-7F13.

Ranjan, E., Sanyal S., Talukdar P. ASAP: Adaptive Structure Aware Pooling for Learning

Hierarchical Graph Representations. Proc. AAAI Conf. Artif. Intell. 2020, 34, 5470–5477.

Hamilton W., Ying R., Leskovec J. Inductive Representation Learning on Large Graphs.

archive 2017, archive:1706.02216

##submission.downloads##

Taqdimot chop etildi

2024-04-13