MATHEMATICAL MODEL AND ARTIFICIAL INTELLIGENCE ALGORITHM IN DRIP IRRIGATION
Keywords:
Artificial Intelligence, Drip Irrigation, Navier-Stokes Equation, Mathematical Model, Python Programming, Control AlgorithmAbstract
Artificial Intelligence (AI) is transforming agriculture, integrating into efficient
irrigation systems and offering solutions for optimizing water usage, forecasting its demand,
monitoring irrigation systems, analyzing plant data, and managing fertilizers. AI technologies
analyze a multitude of variables such as soil condition, climatic conditions, and plant characteristics
to optimize irrigation processes and facilitate the efficient distribution of resources. This direction is
relevant for improving crop yield and the quality of agricultural products, while minimizing costs
and environmental impact.
In this section, the development of a mathematical model for optimizing the drip irrigation
process is described, taking into account the complex interactions between water, soil, plants, and
climatic conditions. The use of Navier-Stokes equations, which describe the motion of fluids, and
numerical methods, such as the finite element method, ensures the modeling and optimization of water
flow. The optimization process involves several steps: from system modeling and parameter
determination to the application of optimization methods for finding optimal solutions. It is necessary
to emphasize the complexity of the irrigation optimization task and the importance of considering a
multitude of variables, including practical aspects of drip irrigation, such as the placement of
drippers and soil types.
As a result of the research, an algorithm for solving the Navier-Stokes equation was developed
in combination with additional equations that take into account the behavior of droplets (for example,
equations of droplet motion in a velocity field). This model allows describing the distribution of
droplets in space and time, their interaction with the environment and other droplets, as well as the
overall behavior of the liquid during irrigation.
Issues related to the development of a mathematical model and an artificial intelligence
algorithm for drip irrigation systems have been studied. The Navier-Stokes equation was used as a
mathematical model for simulating processes in the irrigation system. Keywords. Artificial
intelligence, drip irrigation, Navier-Stokes equation, mathematical model, Python programming,
control algorithm.
References
Камышова, Г.Н. моделирование нейропрогнозирующего управления дождевальными
машинами = modeling of neural predictive control of irrigation machines / . — с.14- 22. —
Электрон. текстовые дан. // Природообустройство / Prirodoobustrojstvo. – 2021. – Вып.
Коллекция: Журнал Природообустройство». http://elib.timacad.ru/dl/full/gmgup-02- 2021-
pdf .
Ковеня В.М. Разностные методы решения многомерных задач: Курс лекций.
Новосибирск: Изд-во Новосиб. гос. ун-та, 2004. 146 с.
Роуч П. Вычислительная гидродинамика. – М.: Мир, 1980 – 616 с.
Самарский А.А. Теория разностных схем. – М: Наука, 1977 – 656 с.
Абдуллаев Х.Ф., Абдуллаев М. Капельное орошение и его технологические элементы //
Современные научные исследования и инновации. 2021. № 8 [Электронный ресурс].
URL: https://web.snauka.ru/issues/2021/08/96362.
Рахимбаев Ф.М., Шукурлаев Х.И. Методические указания по проектированию системы
капельного орошения., Ташкент, 1999г.
Уравнение Навье – Стокса и симуляция жидкостей. [Электронный ресурс] CUDA/Хабр.
URL: https://habr.com/ru/post/470742
[Электронный ресурс] URL: http://www.mpei.ru/Science/Dissertations /dissertations/
Dissertations/SavinAA_diss.pdf#1
Suv xo‘jaligi masalalarini Python dasturlash tilida yechish. Monografiya. “TIQXMMI” MTU
Qarshi irrigatsiya va agrotexnologiyalar instituti. Q.2023. 122 -bet. Globe Edit nashriyoti.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Innovatsion texnologiyalar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.