ОСОБЕННОСТИ ФЕРРИТА НИКЕЛЯ, СИНТЕЗИРОВАННОГО НА СОЛНЕЧНОЙ ПЕЧИ

##article.authors##

  • Мухаммад-Султанхан Пайзуллаханов
  • Одилхужа Раимхужаевич Парпиев
  • Жавахир Зафарович Шерматов

##semicolon##

шпинели, синтез из расплава, ферриты, кобальт, никель, топливный элемент, магнитный гистерезис, катализатор.

##article.abstract##

. Введение. Метод синтеза играет важную роль в получении материала с заданным размером частиц, структурой, микроструктурой и удельной поверхностью, фазовой стабильностью. Эти параметры в совокупности обусловливают определенные свойства. Основными методами синтеза являются твердофазные реакции, термическое разложение, гидротермальные и сольвотермические методы, совместное осаждение, золь-гель и микроволновая обработка. При этом каждый метод имеет свои преимущества и недостатки и нет оптимального способа получения высококачественных ферритовых материалов из шпинели. Поэтому изучение структуры и свойств феррита никеля NiFe0O4, синтезированного из расплава смеси Fe2O3 + NiO на солнечной печи

Методы и материалы. Смесь перемалывали в агатовой ступке с добавкой этилового спирта (10 мас.%), формовали в форме таблеток диаметром 12мм и высотой 15мм. Таблетки помещали на плавильный столик, находящегося на фокальном пятне формы круга диаметром 30мм солнечной печи. Расплав охлаждали путем слива в воду. Закаленные отливки мололи, формовали, спекали при 1100оС.  

Результаты. Получен однофазный материал представляющий кубическую модификацию феррита никеля NiFe2O4 с параметром решетки 8,87 Å. Свеже синтезированный материал проявлял магнитомягкий характер с параметрами Hc=60 Э, Ms=30 emu/g. В то время как обожженный при 1100оС материал проявил повышенные параметры Hc=80 Э, Ms=50 emu/g.

Заключение. Материал, полученный синтезом из расплава на солнечной печи по структуре и магнитным параметрам может быть использован в каталитических процессах синтеза водорода риформингом органического сырья.

##submission.citations##

Subramanian Yuvaraj, Ramakrishnan Kalai Selvan and Yun Sung Lee.An Overview of AB2O4- and A2BO4-Structured Negative Electrodes for Advanced Li-Ion Batteries// See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/291186670

Alan Fernando Ney Boss, Antonio Carlos da Cunha Migliano Ingrid Wilke.Terahertz frequency electrical properties of nickel cobalt ferrites//Conference: 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz DOI: 10.1109/IRMMW-THz.2016.7758775)

Atiq S., Majeed M., Ahmad A., Abbas S.K., Saleem M., Riaz S., Naseem S. Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 2017. V.43. p.2486 –2494

Balgude, S.D., Barkade, S.S. and Mardikar, S.P., 2020. Metal Oxides for High-Performance Hydrogen Generation by Water Splitting. In Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices, CRC Press, PP. 169-194.

Pablo Korth Pereira Ferraz, Robert Schmidt, Delf Kober, Julia Kowal. 2018.A high frequency model for predicting the behavior of lithium-ion batteries connected to fast switching power electronics. Journal of Energy Storage,18: 40-49.

Satish Meshram, Sagar Balgude, Imtiaz Mulla, Parag Adhyapak. 2015. Fabrication of WO3/PANI nanocomposites for ammonia gas sensing application. In 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS), IEEE, pp. 196-199.

Mallesh Kurakula, G. S. N. Koteswara Rao.2020. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136: 109919

Durgadsimi, S., Kattimani, V., Maruti, N., Kulkarni, A., & Mathad, S. (2021). Синтез и структурный анализ феррита никеля, синтезированного методом со-осаждения. Eurasian Physical Technical Journal, 18(4(38), 14–19.

Вызулин С.А., Каликинцева Д.А., Мирошниченко Е.Л., Бузько В.Ю., Горячко А.И.. Радиопоглощающие свойства никель-цинковых ферритов, синтезированных различными способами//Известия РАН. Серия физическая, 2018, том 82, No 8, с. 1045–1047

Bouwmeester, H.J.M. and Burggraaf, A.J. (1997) Dense Ceramic Membranes for Oxygen Separator. In: Gellings, P.J. and Bouwmeester, H.J.M., Eds., The CRC Handbook of Solid State Electrochemistry, CRC Press, New York, 481-553.

Mingchen Tang, Long Xu and Maohong Fan. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review. Applied Energy, 2015, vol. 151, issue C, 143-156.

Zeng Q., Zuo Y., Fan C., Chen C. CO2-tolerant oxygen separation membranes targeting CO2 capture application // J. Membr. Sci. – 2009. – V. 335. – P. 140-144.

Gazda1a M., Jasinski P., Kusz B., Bochentyn B., Gdula-Kasica K., Lendze T. Lewandowska-Iwaniak W., Mielewczyk-Gryn A., Molin S. Perovskites in Solid Oxide Fuel Cells// Solid State Phenomena Vol. 183 (2012) pp 65-70

Online available since 2011/Dec/22 at www.scientific.net © (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/SSP.183.65

Felix N. Büchi, Mathias Reum Stefan A. Freunberger1 and Antonio Delfino On the Efficiency of Automotive H2/O2 PE Fuel Cell Systems//3rd European PEFC Forum, Session B09, Thursday, 7 July, 09:00h, File No. B091

Qinghuan Pan, Liping Ma, Wang Du, Jie Yang, Ran Ao, Xia Yin, Sancheng Qi ng Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag//Energy. V.241, 2022

Ismael M. Solar energy materials and solar cells ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review, Sol. Energy Mater. Sol. Cells 219 (2021). https:// doi.org/10.1016/j.solmat.2020.110786.

Miftahu Gambo Idris, Hafeez Yusuf Hafeez, Mohammed, Abdussalam Balarabe Suleiman, Chifu Ebenezer Ndikilar. A review on recent development in the spinel ferrites-based materials for efficient solar fuel (hydrogen) generation via photocatalytic water-splitting//Applied Surface Science Advances 18 (2023) 100468 https://doi.org/10.1016/j.apsadv.2023.100468

Akbarov R.Y., Paizullakhanov M.S. Characteristic features of the energy modes of a Large Solar Furnace with a capacity of 1000 kW//Applied Solar Energy, 2018. V. 54.m P. 99-109

Paizullakhanov M.S., Suvonova L.S. & Cherenda N.N. Synthesis of silicon carbide from natural raw material in a solar furnace//High Temperature Material Processes 28(1):19–25 (2024)

Paizullakhanov, M.S., Shermatov, Zh.Z., Nodirmatov, E.Z., Rajamatov, O.T., Ernazarov, F.N., Sulaimanov, M.T.Nurmatov, Sh.,Cherenda, N.N. Synthesis of materials by the concentrated solar radiation.// High Temperature Material Processes 25(2):17–29 (2021)

Payzullakhanov M.S., Payziyev S.D., Suleymanov S.K. Modeling of processes of heating and cooling of materials in a solar furnace//Applied Solar Energy, 2019. V.55.iss..5. P.404-408.

Paizullakhanov, M.S., Karshieva, N.K., Ernazarov, F.N. et al. Studying the Possibility of Applying Barium-Strontium Cobaltite in Hydrogen Energy. Therm. Eng. 71, 280–284 (2024). https://doi.org/10.1134/S0040601524030054

Шкловский Б.И., Эфрос А.Л. Современное состояние теории прыжковой электропроводности. УФН, 1983, т.141, вып.4, с.711-744

Funke K. Jump relaxation model and coupling model-a comparison, J. Non-Cryst. Solids., 172 (1994) 1215-1221.

Torres D., De Llobet S., Pinilla J.L., Lázaro M.J., Suelves I., Moliner R. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. J. Nat. Gas. Chem. 2012; 21:367–73.

. Gudyma T.S, Lapekin N.I., Popov M.V., Bannov A.G. Application of ice to the synthesis of graphite oxide: a modified hummers method// Solid Fuel Chemistry, Volume 56, pp 347-352.

Shao Z., Yang W., Cong Y., Dong H., Tong J., Xiong G. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−x oxygen membrane // J. Membrane Sci. 2000. – V. 172. – P. 177-188.

Enrique Juste, Aurélie Julian, G. Etchegoyen, Pierre-Marie Geffroy, Thierry Chartier, et al. Oxygen permeation, thermal and chemical expansion of (La,Sr)(Fe,Ga)O3– δ perovskite membranes. Journal of Membrane Science, 2008, 319, pp.185-191.

Zeng Q., Zuo Y., Fan C., Chen C. CO2-tolerant oxygen separation membranes targeting CO2 capture application //J. Membr. Sci. 2009. V. 335. P. 140-144.

##submission.downloads##

Taqdimot chop etildi

2024-09-12

##issue.issue##

Bo'lim

Статьи