PARABOLOTSILINDRIK KONSENTRATORLI KOLLEKTORLARDA ISSIQLIK TASHUVCHI OQIM GIDRODINAMIKASINI MATEMATIK MODELI NATIJALARINI QAYTA ISHLASH
Ключевые слова:
matematik modellashtirish, quyosh energiyasi, konsentratsiya, quyosh parabolotsilindrik konsentratori, Frenel linzalari, chegara shartlari, turbulent oqim.Аннотация
Maqolada quyosh parabolotsilindrik konsentratorlarining nur qabul qilish sirtlari va absorberi orasida issiqlik o‘tkazuvchanlik jarayonlarini modellashtirish hisoblarida ishlatish uchun uchta keng tarqalgan diskretlashtirish yondashuvlari - cheklangan hajm usuli, chekli elementlar usuli va chekli farq usullari taqqoslangan hamda konsentrator absorber trubasining tashqi yuzasi bo‘ylab issiqlik oqimining taqsimlanishi OpenFOAM dasturi vositasida Monte-Karlo usulida modellashtirilib natijalar olingan.
Библиографические ссылки
Toshmamatov B.M., Shomuratova S.M., Mamedova D.N., Samatova S.H.Y., Chorieva S. 2022 Improving the energy efficiency of a solar air heater with a heat exchanger – Accumulator. 1045(1), 012081.
G N Uzakov, S M Shomuratova and B M Toshmamatov 2021 Study of a solar air heater with a heat exchanger – accumulator IOP Conf. Series: Earth and Environmental Science. 723 (2021) 052013. doi:10.1088/1755-1315/723/5/052013.
T A Faiziev and B M Toshmamatov 2021 Mathematical model of heat accumulation in the substrate and ground of a heliogreenhouse IOP Conf. Series: Earth and Environmental Science. 723 032006. doi:10.1088/1755-1315/723/3/032006.
Aliyarova L A, Uzakov G N, Toshmamatov B M 2021 The efficiency of using a combined solar plant for the heat and humidity treatment of air IOP Conf. Series: Earth and Environmental Science. 723 052002. doi:10.1088/1755-1315/723/5/052002.
Blanco M.J., and Miller S. Introduction to Concentrating Solar Thermal (CST) Technologies. Advances in Concentrating Solar Thermal Research and Technology. Elsevier Inc, (2017).
Abed, N. & Afgan, I. Enhancement Techniques of Parabolic Trough Collectors: A Review of Past and Recent Technologies. Adv. Civ. Eng. Tech. (2019), 33, 313–318.
Philibert C, Frankl P. International Energy Agency. Technology roadmap: concentrating solar power. Paris (France): IEA/OECD; (2010).
Tennekes, Hendrik, and John L. Lumley. “A first course in turbulence”. (1994). Cambridge: The MIT Press.
Mathieu, Jean, and Julian Scott. “An introduction to turbulent flow”. (2000). Cambridge: Cambridge University Press.
Pope, Stephen B. “Turbulent flows”. (2019). Cambridge: Cambridge University Press.
Schiestel, Roland. "Modeling and Simulation of Turbulent Flows". (2010). https://nbnresolving.org/urn:nbn:de:101:1-201412222763.
Menter, F.R. ―Two-equation eddy-viscosity turbulence models for engineering applications‖. AIAA journal, 32(8). (1994). pp.1598–1605.
Petrova, R. "Finite Volume Method – Powerful Means of Engineering Design". (2012). Edited by Radostina Petrova. Janeza Trdine 9, 51000 Rijeka, Croatia.
Moukalled, F., L. Mangani, and M. Darwish. "The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab". (2016). Cham: Springer.
Kaloudis, E, E Papanicolaou, and V Belessiotis. “Numerical Simulations of a Parabolic Trough Solar Collector with Nanofluid Using a Two-Phase Model.” Renewable Energy. 97 (2016): 218-229.