ПРОИЗВОДСТВО БИОТОПЛИВА ИЗ НЕКОНДИЦИОННЫХ СЕМЯН ХЛОПКА - ОТХОДОВ МАСЛОЭКСТРАКЦИОННЫХ ЗАВОДОВ
Keywords:
масложировая промышленность, переработка масличных семян, пиролиз, технология пиролиза, пиролиз отходов масложировых предприятий, альтернативное топливо, пирогаз, пирожидкость, коксовая остатка, использования альтернативных топливных ресурсов.Abstract
Растущие потребности в энергии удовлетворяются главным образом за счет использования ископаемого топлива, что увеличивает энергетическую нагрузку на природу. Эту проблему можно решить путем обеспечения экологической и энергетической безопасности и ресурсосбережения. Ведущая роль в реализации этих процессов принадлежит нетрадиционной возобновляемой энергетике, при этом особое значение приобретают переработка промышленных отходов и производство альтернативной энергии. В том числе отходы масложировых заводов
References
Смычагин Е.О., Мустафаев С. К. Анализ состава отходов очистки масличных семян и
способов их утилизации и переработки. Научный журнал КубГАУ, Краснодар, Россия,
, №120(06), с. 1-13 .
Беляев Н.М., Кисель А.А. Новые способы и потенциальные возможности применения
отходов производства пищевой продукции. Сборник статей Всероссийской научнопрактической конференции «Региональные проблемы геологии, географии, техносферной
и экологической безопасности». Екатеринбург, 2019, с. 162-166.
Uzakov G.N., Toshmamatov B.M., Davlonov Kh.A., Khatamov I.A. Solar installation for thermal
processing of solid waste. Utility model patent of the Republic of Uzbekistan No. FAP 20200171.
Juping Liu, Xu Chen, Wei Chen, Mingwei Xia, Yingquan Chen, Hanping Chen, Kuo Zeng,
Haiping Yang. Biomass pyrolysis mechanism for carbon-based high-value products.
https://doi.org/10.1016/j.proci.2022.09.063.
Mamta Devi, Sachin Rawat, Swati Sharma. A comprehensive review of the pyrolysis process:
from carbon nanomaterial synthesis to waste treatment. Oxford Open Materials Science,
Volume 1, Issue 1, 2021, itab014, https://doi.org/10.1093/oxfmat/itab014 .
Kenneth B. Medlock III, Rachel A. Meidl. The Advanced Carbon Economy: A Sustainable
Hydrogen Pathway. 2021, Rice University’s Baker Institute for Public Policy
https://doi.org/10.25613/v58t-pm38.
Suprabhat Seal, Achyut K. Panda, Sachin Kumar, and R.K. Singh. Production and
characterization of bio oil from cotton seed. March 2015, Environmental Progress & Sustainable
Energy. DOI:10.1002/ep.12011 .
Pyrolysis of cotton seed and characterization of the liquid product. A Thesis submitted in partial
fulfillment of the requirements for the Degree of BACHELOR OF TECHNOLOGY. Submitted
by Suprabhat Seal, Supervisor: Dr. R.K Singh, Department of Chemical Engineering National
Institute of Technology, ROURKELA, 2013, oai:generic.eprints.org:5344/core1451.
Najaf Ali, Mahmood Saleem, Arshad Chughtai, Khurram Shahzad. Fast pyrolysis of Pakistani
cotton stalks in fluidized bed reactor: design and preliminary results. International Conference on
Applied Energy, ICAE 2013, Jul 1-4, 2013, Pretoria, South Africa, рaper ID: ICAE2013-664.
Uzakov G.N., Toshmamatov B.M., Qodirov I.N. Device for thermal processing of solid
household waste. Muqobil energetika 2 (01), 100-104.
Kodirov D., Tursunov O., Ahmedov A., Khakimov R., Rakhmataliev M. Economic efficiency in
the use of solar energy: A case study of Agriculture in Uzbekistan, IOP Conf. Ser.: Earth Environ.
Sci. 614, 012031 (2020).
Uzakov G.N., Efficiency of joint operation of greenhouses and solar greenhouses, Applied Solar
Energy 46(4), 319–320 (2010).
Joardder M.H., Halder P.K., Rahim A., Paul N. Solar assisted fast pyrolysis: a novel approach of
renewable energy production, J. Eng. 2014 9, (2014).
Zeng K., Minh Р, Gauthier D., Weiss-Hortala E., Nzihou A., Flamant G. The effect of temperature
and heating rate on char properties obtained from solar pyrolysis of beech wood, Bioresour.
Technol. 182, 114-119 (2015).
Zeaiter J., Ahmad M.N., Rooney D., Samneh B., Shammas E.. Design of an automated solar
concentrator for the pyrolysis of scrap rubber. Energy Convers. Manag. 101, 118-125 (2015).
Uzakov G.N., Davlonov H.A., Holikov K.N., Study of the Influence of the Source Biomass
Moisture Content on Pyrolysis Parameters, Applied Solar Energy 54, 481 - 484 (2018).Muqobil energetika/Альтернативная энергетика/Alternative energy #4 [11) 2023
12.2023 57
Almardanov X.A., Khatamov I.A., Turaev Z.B., Yusupov R.E., Application of solar concentrators
to obtain alternative fuel through a heliopyrolysis device, Universum: Technical Sciences 8-12
(2021).
Davlonov X.A., Almardanov X.A., Khatamov I.A., A program for modeling and calculating the
exergic balance of a heliopyrolysis device to obtain alternative fuels from biomass (DGU 10337,
Tashkent, 2021).
Xayrulla Davlonov, Xamidulla Almardanov, Inomjon Khatamov, Sadriddin Urunboev, Palvan
Kalandarov, and Orif Olimov. Study on Heat and Material Balance of Heliopyrolysis Device.
Department of Renewable Energy Sources, Karshi Engineering Economics Institute, AIP Conf.
Proc. 2686, 020023 (2022) https://doi.org/10.1063/5.0111855.
Uzakov G.N., Almardanov X.A., Kodirov I.N. and Aliyarova L.A. Studying the temperature
regime of the heliopyrolysis device reactor. E3S Web Conf. Volume 411, 2023 VI International
Conference on Actual Problems of the Energy Complex and Environmental Protection (APECVI-2023 https://doi.org/10.1051/e3sconf/202341101040.
Frid S.E., Lisitskaya N.V., and Muminov Sh.A. The Optimal Angle of Inclination of Photovoltaic
Modules to the Horizon. Applied solar energy. Volume. 59, No. 1, 2023, p. 26-30. DOI:
3103/S0003701X23600662 .
Yo. A. Yo. A. Yusupova, O. H. Otaqulovb, S. F. Ergashevb, and A. A. Kuchkarov. Automated
Stand for Measuring Thermal and Energy Characteristics of Solar Parabolic Trough
Concentrators. Applied solar energy. Volume. 57, No. 3, 2021, p. 216-223 DOI:
3103/S0003701X21030117.