УДК: 669.01/.09

• 10.5281/zenodo.10686225

# ИССЛЕДОВАНИЕ МИНЕРАЛОГИЧЕСКОГО СОСТАВА ПРОБ РУДЫ КАЛЬМАКЫР И ЕШЛИК I



Хасанов Абдурашид Салиевич

д-р техн. наук, профессор, зам. глав. инженера по науке AO «Алмалыкский ГМК», Республика Узбекистан, г. Алмалык



Турдиев Шахбоз Шермамат угли

(PhD), зав. каф. "Геология и разведка полезных ископаемых" Кариинский инженерно-экономический институт, Республика Узбекистан, г. Карши E-mail: shahboz\_01011991@mail.ru



Боймуродов Нажмиддин Абдукодирович

Асс. кафедры «Горное дело»,
Каршинский инженерноэкономический институт,
Узбекистан, Карши
E-mail: najmiddinboy-94@mail.ru
ORCID ID: 0009-0007-7820-7799

**Аннотация.** В данной статье приведены сведения о процессе увеличения доли свободных зерен халькопирита с уменьшением объема руды на руднике Ешлик I и его положительном влиянии на эффективность обогащения меди. Согласно приведенным сведениям, руды месторождений Калмакыр и Ешлик I описаны и изучены на предмет определенных различий по содержанию в них минералов, в частности кварца, слюды и полевых шпатов.

**Ключевые слова:** «Кальмакыр», «Ешлик I», обогатительной фабрика, платина, технология переработка медьсодержащих рудников, основные рудные минералы, Основополагающие руды месторождения «Кальмакыр».

## QALMOQQIR VA YOSHLIK I KONLARIDA RUDA NAMUNALARINING MINERALOGIK TARKIBINI OʻRGANISH

### Xasanov Abdurashid Saliyevich

OKMK AJ ilmiy ishlar boʻyicha bosh muhandis oʻrinbosari t.f.d., prof. Oʻzbekiston, Olmaliq

## Turdiyev Shaxboz Shermamat oʻgʻli

Qarshi muhandislik-iqtisodiyot instituti "Geologiya va foydali qazilmalarni qidirish" kafedrasi mudiri, PHD, , Oʻzbekiston, Qarshi

## Boymurodov Najmiddin Abduqodirovich

Qarshi muhandislik-iqtisodiyot instituti konchilik kafedrasi assistenti, Oʻzbekiston, Qarshi

Annotatsiya. Ushbu maqolada Yoshlik I konida ruda hajmining kamayishi bilan erkin xalkopirit donalarining ulushini oshirish jarayoni va uning misni boyitish samaradorligiga ijobiy ta'siri haqida ma'lumot berilgan. Berilgan ma'lumotlarga koʻra, Qalmoqqir va Yoshlik I konlari rudalari foydali qazilmalar, xususan, kvarts, slyuda va dala shpatlari tarkibidagi ma'lum farqlarga qarab tavsiflangan va oʻrganilgan.

Kalit soʻzlar: "Qalmoqqir", "Yoshlik I", qayta ishlash zavodi, platina, mis saqlovchi konlarni qayta ishlash texnologiyasi, asosiy rudali foydali qazilmalar, "Qalmoqqir" konining asosiy rudalari.

# STUDY OF THE MINERALOGICAL COMPOSITION OF ORE SAMPLES KALMAKYR AND YOSHLIK I

#### Khasanov Abdurashid

Dr. tech. sciences, professor.

Deputy Chief Engineer for Science
of Almalyk MMC JSC,

Uzbekistan, Almalyk

#### Turdiev Shakhboz

Head of dep. of "Geology and mineral exploration" Karshi engineering and economics institute, Republic of Uzbekistan, Karshi

#### Boymurodov Najmiddin

Ass. dept. of "Mining" Karshi engineering-economics institute, Uzbekistan, Karshi

Abstract. This article provides information about the process of increasing the proportion of free chalcopyrite grains with a decrease in ore volume at the Yoshlik I mine and its positive effect on the efficiency of copper beneficiation. According to the information provided, the ores of the Kalmakyr and Yoshlik I deposits have been described and studied for certain differences in the content of minerals, in particular quartz, mica and feldspars. Keywords: "Kalmakyr", "Yoshlik I", processing plant, platinum, technology for processing copper-bearing mines, main ore minerals, Basic ores of the "Kalmakyr" deposit.

Введение. Первоначально для определения минерального состава проб руды месторождений «Кальмакыр» и «Ешлик І» выполнены качественнке и количественный минералогическиее анализы всех проб с определением содержание ценнкх компонентов. Процесс определение минералогического состава выпольнялось на автоматизированном минералогическом комплексе марки Qemscan.

**Обсуждение и результаты.** Минеральный состав проб исходной руды представлен в таблице 1.

По данным, представленным в таблице 1, видно, что руды месторождений «Кальмакыр» и «Ешлик I» имеют некоторые различия в минеральном составе, в частности кварце, слюде и полевые шпаты.

Основополагающие руды месторождения «Кальмакыр» представлена

породообразующими минералами 92,5%. Среди них существенно преобладает кварц, доля которого находится на 36%. Количество уровне шпатов, представленных калиевыми полевыми шпатами и плагиоклазами, составляет 20%. В руде присутствуют слюда и хлорит, доля которых 15-17%. Суммарное количество карбонатов (кальцит и составляет 4,5%. доломит) Наличие высокой доли слюдистых минералов типа мусковита, серицита, хлорита может вызвать осложнения при переработке руды, так как эти минералы обладают природной гидрофобностью, а при измельчении материала приводят руду ушла-К мованию.

Отличия от месторождение первого руда месторождения «Ешлик I» на 96% состоит из породообразующих минералов, которое побольше породообра-

Таблица 1 **Минеральный состав руды месторождение Кальмакыр и Ешлик I** 

| Минерал, группа минералов                  | Массовая доля, % |             |  |  |  |  |
|--------------------------------------------|------------------|-------------|--|--|--|--|
|                                            | Проба            | Проба Ешлик |  |  |  |  |
|                                            | Кальмакыр        | I           |  |  |  |  |
| Породообразующие минералы                  |                  |             |  |  |  |  |
| Кварц                                      | 36,0             | 17,0        |  |  |  |  |
| Хлорит                                     | 17,0             | 16,0        |  |  |  |  |
| Калиевые полевые шпаты, плагиоклазы        | 20,0             | 40,0        |  |  |  |  |
| Слюда (мусковит, серицит)                  | 15,0             | 7,0         |  |  |  |  |
| Амфиболы                                   | -                | 10,0        |  |  |  |  |
| Карбонаты (кальцит, доломит)               | 4,5              | 2,0         |  |  |  |  |
| Гипс, ангидрит                             | -                | 4,0         |  |  |  |  |
| Рудные минералы                            |                  |             |  |  |  |  |
| Пирит                                      | 4,5              | 0,7         |  |  |  |  |
| Халькопирит                                | 1,1              | 0,8         |  |  |  |  |
| Халькозин, ковеллин, борнит, блеклая       | Ед. знаки        | Ед. знаки   |  |  |  |  |
| руда                                       |                  |             |  |  |  |  |
| Молибденит, сфалерит, галенит, арсенопирит | Ед. знаки        | Ед. знаки   |  |  |  |  |
| Минералы серебра                           | Ед. знаки        | Ед. знаки   |  |  |  |  |
| Оксиды, гидроксиды железа                  | 1,2              | 1,6         |  |  |  |  |
| Акцессорные минералы                       |                  |             |  |  |  |  |
| Эпидот, ильменит, рутил, барит,            | 0,7              | 0,9         |  |  |  |  |
| апатит, циркон и т.д.                      |                  |             |  |  |  |  |
| Итого                                      | 100,0            | 100,0       |  |  |  |  |

зование. В отличии от руды месторождения «Кальмакыр» в руде Ешлик I преобладает меньшем количестве кварца, а калиевые полевые шпаты и плагиоклазы, в сумме составляющие 40% которое два раза больше, чем месторождение «Кальмакыр». На долю кварца приходится всего 17%. В руде присутствуют слюда и хлорит, доля которых составляет 7 и 16% соответственно. Суммарное количество карбонатов, представленных кальцитом и доломитом, составляет 2%. Отличительной чертой

руды месторождения «Ешлик I» является наличие амфиболов -10% и сульфатов (гипс, ангидрит) -4%.

При преобразование месторождения «Кальмакыр» основном представлена мало-сульфидными различных металлов и окислами железа. Содержание окислов железа составляется в пределах 1,2%. Сумма всех сульфидных минералов составляет 5,6%. Среди всех сульфидов основная масса является пирит, доля которого находится на уровне 4,5%. Наименщей количество занимает халько-

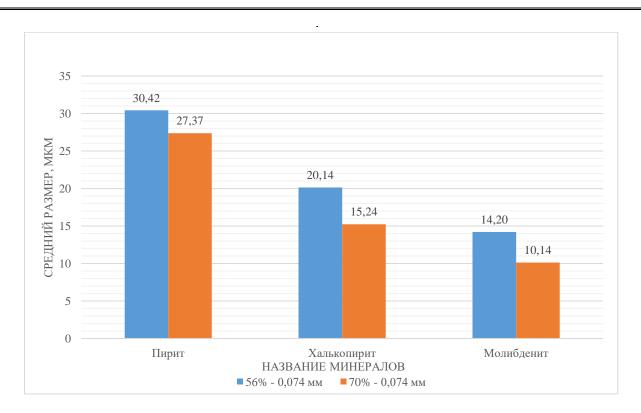



Рис.1. Средний размер зерен основных рудных минералов в руде месторождения «Кальмакыр» крупностью 56 и 70% класса -0,074 мм.

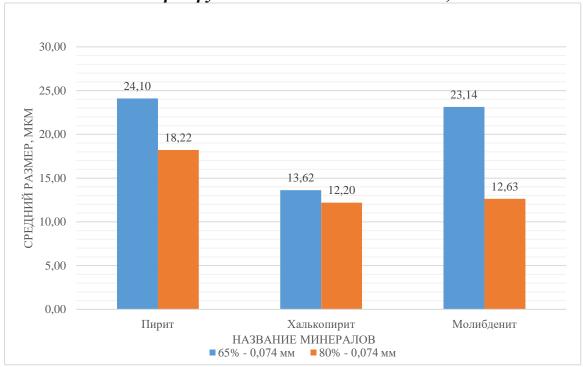



Рис.2. Средний размер зерен основных рудных минералов в руде месторождения «Кальмакыр» крупностью 65 и 80% класса -0,074 мм.

пирит, которое массовая доля составляет

металлов, а также минералы серебра 1,1%. Остальные сульфиды различных присутствуют в количестве единичных

знаков. Массовая доля акцессорных минералов составляет 0,7%.

Проба «Ешлик I», как и проба «Кальмакыр», представлена схожей рудной минерализацией с небольшим изменением. Главным отличием пробы

«Кальмакыр» и «Ешлик I» относятся к смешанному типу руд. По меди обе пробы характеризуют первичный тип руды. Основным минералом меди в них является халькопирит [1; с.15].

Формы нахождения рудных мине-

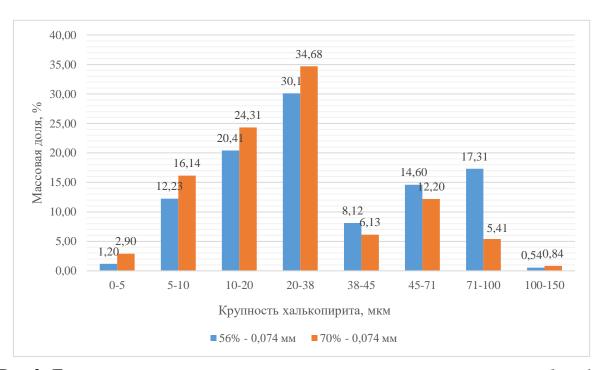



Рис.3. Гранулометрическая характеристика халькопирита в пробе руды месторождения «Кальмакыр».

«Ешлик I» является пониженное содержание пирита на 0,7%. Количество халькопирита составляет 0,8%. Остальные сульфиды различных металлов, а также минералы серебра присутствуют в количестве единичных знаков. На долю окислов железа приходится 1,6%. Массовая доля акцессорных минералов составляет 0,9%.

По содержанию сульфидов проба руды «Кальмакыр» характеризует мало сульфидный, проба руды «Ешлик I» — убого-сульфидный тип руды. По степени окисления, рассчитанной по железу, пробы руды месторождения

ралов (халькопирит и молибденит) в пробе руды месторождения «Кальмакыр» изучались при крупности измельчения материала 56 и 70% класса -0,074 мм, руды месторождения «Ешлик I» на крупности 65 и 80% класса -0,074 мм. Целью данного исследования являлось получение сравнительных характеристик минералов.

На рисунках 1 и 2 приведены средние размеры основных рудных минералов при различной крупности измельчения руды.

Во всех пробах с измельчением руды снижается средний размер зерен мине-

ралов. Средний размер пирита, халькопирита и молибденита в зависимости от крупности измельчения варьируется в следующих диапазонах: 27,37-30,42 мкм, 15,24-20,14 мкм и 10,14-14,20 мкм соответственно. Наименьший средний размер

пирита — 18,22 мкм и халькопирита — 12,20 мкм зафик-сирован в пробе Ешлик I крупностью 80% класса -0,074 мкм, а молибденита в Кальмакыр крупностью 70% класса -0,074 мкм.

Технолого-минералогические ха-

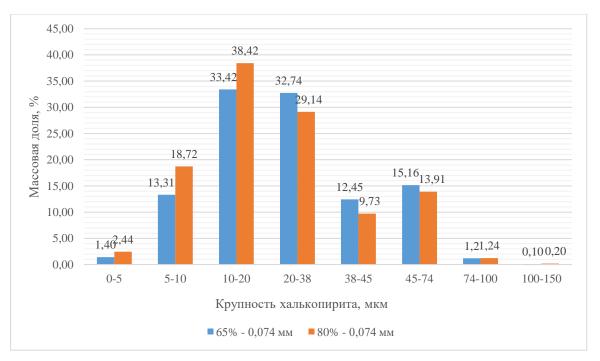



Рис.4. Гранулометрическая характеристика халькопирита в пробе руды месторождения «Ешлик I».

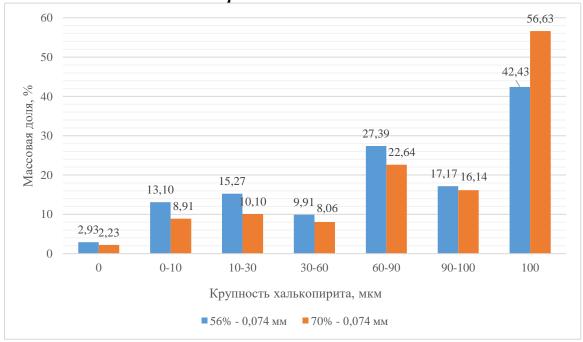



Рис. 5. Распределение халькопирита по степени раскрытия в пробе Кальмакыр.

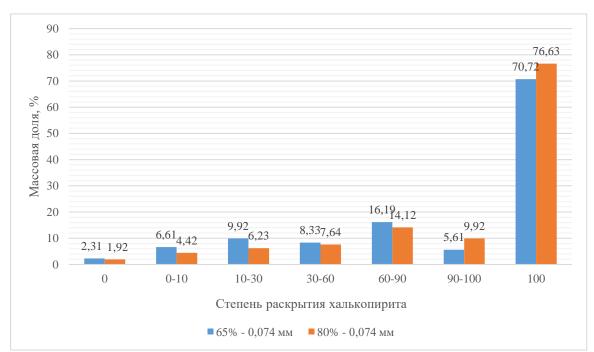



Рис. 6. Распределение халькопирита по степени раскрытия в пробе руды месторождения «Ешлик I».

## рактеристики халькопирита в руде

Результаты гранулометрического анализа халькопирита в пробах руды месторождений «Кальмакыр» и «Ешлик I» различной крупности представлены на рисунках 3 и 4.

По данным, представленным на рисунке 3, видно, что в пробах руды месторождения «Кальмакыр» основная часть зерен халькопирита преобладает в классах крупности 5-38 мкм. При снижении тонины помола с 56% до 70% готового класса, выход зерен крупностью 5-38 мкм увеличивается с 62,9 до 75,9%, в основном за счет снижения доли зерен размером 45-100 мкм. При снижении крупности проб массовая доля шламового класса менее 5 мкм увеличивается с 2,37 до 4,1%.

В пробах руды месторождения «Ешлик I» (рисунок 4) большинство зерен халькопирита также находится в

классах крупности 5-38 мкм — 81,5% (для крупности 65% - 74 мкм) и 82,9% (для крупности 80% -74 мкм). При снижении тонины помола в основном происходит прирост класса крупности 5-10 мкм с 13,31 до 18,72%. Для разной крупности массовая доля шламового класса менее 5 мкм изменяется от 1,40 до 2,44%.

На рисунках 5 и 6 представлены данные о распределении халькопирита по степени раскрытия зерен в пробах руды месторождений «Кальмакыр» и «Ешлик I», измельченных до различной крупности.

Исследование распределение основопологающих минералов для меди и железа дасть нам при оптимальном выборе технологическое схемы в пределы обогащении, так как установление размеры зёрен связанно с степенями флотируемости минералов и определение другие способы обогащении данного

типа.

Установлено, что в пробах руды месторождений «Ешлик I» и «Кальмакыр» крупностью 65 и 70% класса -74 мкм доля зерен халькопирита со степенью раскрытия менее 30% составляет 9,95 и 13,05% соответственно.

Поскольку данная категория зерен халькопирита является наиболее упорной

к флотационному обогащению, можно предположить, что извлечение меди из руды месторождений «Ешлик I» будет выше. Кроме того, в пробе Ешлик I количество свободных зерен халькопирита значительно выше (73,4%). Данный факт свидетельствует о возможности получить более богатый концентрат.

Таблица 2. Минеральные ассоциации халькопирита на месторождение Кальмакыр и Ешлик I

| Ешлик І                      |                               |               |               |               |  |  |
|------------------------------|-------------------------------|---------------|---------------|---------------|--|--|
| Минерал-                     | Распределение халькопирита, % |               |               |               |  |  |
| носитель                     | Проба Кальмакыр               |               | Проба Ешлик I |               |  |  |
|                              | Крупность 56%                 | Крупность 70% | Крупность 65% | Крупность 80% |  |  |
|                              | -0,074 мм                     | -0,074 мм     | -0,074 мм     | -0,074 мм     |  |  |
| Фон                          | 61,89                         | 84,15         | 86,39         | 91,93         |  |  |
| Кварц                        | 7,28                          | 2,58          | 0,73          | 0,35          |  |  |
| Хлорит                       | 8,15                          | 3,77          | 1,67          | 0,64          |  |  |
| Слюда, глина                 | 8,66                          | 4,05          | 2,12          | 1,52          |  |  |
| Полевые<br>шпаты             | 7,45                          | 1,92          | 4,50          | 2,8           |  |  |
| Амфиболы                     | -                             | -             | 0,36          | 0,09          |  |  |
| Карбонаты                    | 0,77                          | 0,42          | 0,31          | 0,38          |  |  |
| Гипс                         | -                             | 1             | 0,31          | 0,13          |  |  |
| Пирит                        | 2,56                          | 1,42          | 2,29          | 1,29          |  |  |
| Борнит                       | 0,44                          | 0,22          | 0,23          | 0,11          |  |  |
| Ковеллин-<br>халькозин       | 0,14                          | 0,10          | 0,01          | 0,02          |  |  |
| Блеклая руда                 | 0,04                          | 1             | 0,01          | 0,03          |  |  |
| Галенит                      | -                             | 0,03          | 0,11          | 0,16          |  |  |
| Сфалерит                     | 0,10                          | 0,12          | 0,05          | 0,01          |  |  |
| Молибденит                   | -                             | 1             | 0,02          | -             |  |  |
| Минералы<br>титана           | 0,88                          | 0,27          | 0,52          | 0,22          |  |  |
| Оксиды /<br>Гидроксиды<br>Fe | 1,22                          | 0,80          | 0,27          | 0,23          |  |  |
| Акцессорные                  | 0,43                          | 0,14          | 0,12          | 0,10          |  |  |
| Итого                        | 100,0                         | 100,0         | 100,0         | 100,0         |  |  |

По данным, представленным на рисунке 6, видно, что при снижении крупности руды месторождения «Ешлик I» увеличивается доля свободных зерен халькопирита, что благоприятно повлияет на показатели обогащения меди.

В таблице 2 приведены минеральные ассоциации халькопирита в рудах месторождений «Кальмакыр» и «Ешлик I». Ассоциация минерала с фоном указывает на долю поверхности минерала, к которой может быть свободный доступ реагентов.

Заключение. По данным о минеральных ассоциациях халькопирита установлено, что для растворов и реагентов доступно от 61,89 до 91,93% поверхности минерала. Наибольшая доля раскрытой поверхности минералов отмечается в пробе руды месторождения «Ешлик I» крупностью 80% класса -0,074 мм. Халькопирит в основном ассоциирован с породообразующими минералами: кварцем, хлоритом, слюдой, глиной и т.д. Из рудных минералов халькопирит ассоциирует преимущественно с пиритом.

## СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Набойченко С.С., Ласточкина М.А. / под общ. ред. С.С.Набойченко. Шламы электролитического рафинирования меди и никеля // монография. Екатеринбург: УРФУ, 2013. С. 258.
- 2. Плюснин П.Е., Байдина И.А., Шубин Ю.В., Коренев С.В. Синтез, кристаллическая структура и термические свойства [Pd(NH3)4][AuCl4]2 Ж. неорг. химии. 2007. Т. 52. № 3. С. 421-427.
- 3. Котляр Ю.А., Меретуков М.А., Стрижко Л.С. Металлургия благородных металлов // Руда и металлы. 2005. Т. 1. С. 253-263.
- 4. Борбат В.Ф. Металлургия платиновых металлов // Москва: Металлургия, 1977г. С. 40-54; 87-88; 88-92.
- 5. Weiland R., Lupton D. F., Fischer B., Merker J., Scheckenbach C. and Witte J. High temperature mechanical properties of the platinum group metals // Platinum Metals Rew.- 2006.- V. 50, Issue 4.- P. 158-170.
- 6. Goldberg R.N., Loren G. Hepler L.G. Thermochemistry and oxidation potentials of the platinum group metals and their compounds // Chem. Rew.- 1968.- V. 68.- Issue 1.- P. 229-252.
- 7. Масленицкий И.Н., Чугаев Л.В., Борбат В.Ф., Никитин М.В., Стрижко Л.С. Металлургия благородных металлов. М.: Металлургия, 1987г. С. 410 и 411, 414,415 и 416.
- 8. Хурсанов А.Х., Хасанов А.С., Б.Р. Вохидов // Разработка технологии получения аффинированного палладиевого порошка из отработанных электролитов // Научная статья. Горный вестник Узбекистана г. Навои. №1 (76) 2019г. ст. 58-61.
- 9. Shodiev, A., Boymurodov, N., & Ravshanov, A. (2023). STUDY OF THE TECHNOLOGY FOR EXTRACTING TUNGSTEN IN THE FORM OF A SEMI-FINISHED PRODUCT AND METALLIC FORM FROM INDUSTRIAL WASTE.

- (E) ISSN: 3030-3214 Volume 2, № 1 March 2024
- Sanoatda raqamli texnologiyalar/Цифровые технологии в nромышленности, 1(2), 87-91.
- 10. Пирматов, Э. А., Шодиев, А. Н. У., & Боймуродов, Н. А. (2023). ИЗУЧЕНИЕ РАСТВОРИМЫХ ФОРМ ВОЛЬФРАМА И УСЛОВИЙ КРИСТАЛЛИЗАЦИИ ШЕЕЛИТА И ВОЛЬФРАМИТА. *Universum: технические науки*, (11-2 (116)), 15-19.
- 11. Турдиев, Ш., Комилов, Б., Раббимов, Ж., & Азимов, А. (2022). ҚИЗОТА (ЕШЛИК ІІ) МАЙДОНИНИНГ СТРАТИГРАФИЯСИ. Евразийский журнал академических исследований, 2(11), 502-504.
- 12. Турдиев, Ш., Комилов, Б., Раббимов, Ж., Бўриев, С., & Азимов, А. (2022). ҚИЗОТА (ЕШЛИК II) МАЙДОНИНИНГ ГИДРОГЕОЛОГИК ТУЗИЛИШИ. Евразийский журнал академических исследований, 2(11), 242-245.