COMPARATIVE ANALYSIS OF ELECTRICAL PARAMETERS OF PHOTOELECTRIC AND PHOTOTHERMAL BATTERIES IN NATURAL CONDITIONS
Keywords:
polycrystal, monocrystal, photoelectric battery, photothermal battery, mobile photovoltaic device, short-circuit current, short-circuit voltage, power, intensity of solar radiationAbstract
Today, there are several types of photovoltaic cells on the commercial market, and
their efficiency in natural conditions varies depending on climatic factors. Taking into account that
the weather conditions of different regions are different, there is a problem of determining the
efficiency of different types of photoelectric batteries for a certain region and choosing a type with
stable parameters.
To solve this problem, different types of photoelectric batteries (PV) of the same capacity are
installed in a portable photovoltaic device (MPHD) and tested simultaneously under natural
conditions. Scientific research was carried out using PVs MPHD mounted on a two-axle trailer.
MPHD is 1300x800 mm in size, designed for loads up to 700 kg. The power of each PV installed on
it was 50W: the front glass, the back protective film in the form of a texture was transferred to white
and black monocrystalline, flat glass monocrystalline and polycrystalline photoelectric batteries. According to the results of the research, different types of photoelectric and photothermal
batteries with the same capacity were tested in natural conditions using MPHD, and the changes in
their electrical parameters were analyzed. In addition, the FEB type with a stable parameter was
determined in the study.
Using the developed MPHD, by testing different types of PV in different regions of the republic,
it was possible to determine the type of FEB with stable parameters suitable for the region. Therefore,
it is possible to recommend the type of FEB intended for use in planned photoelectric station (PVS).
The use of a photoelectric battery, correctly selected taking into account the climatic conditions of
the region, provides an opportunity to reduce energy losses in PVS.
References
Rahman M.M, Hasanuzzaman M, Rahim NA. Effects of various parameters on PV-module
power and efficiency. Energ Conver Manage 2015, Vol.103, pp.348–358. URL:
http://dx.doi.org/10.1016/j.enconman.2015.06.067
Makrides G, Zinsser B, Phinikarides A, Schubert M, Georghiou G. Temperature and thermal
annealing effects on different photovoltaic technologies. Renew Energy 2012, Vol.43, pp 407–
URL:doi:10.1016/j.renene.2011.11.046
Daniela D, Gina B, Björn M, Reise Christian R. On the impact of solar spectral irradiance on the
yield of different PV technologies. Sol Energy Mater Sol Cells 2015, Vol. 132, pp 431–
URL:doi:10.1016/j.solmat.2014.09.034
Dubey R, Chattopadhyay S, Kuthanazhi V, John JJ, Solanki CS, Kottantharayil A, et al.
Performance degradation of field-aged crystalline silicon PV modules in different Indian climatic
conditions. Presented at the 40th IEEE photovoltaic spec. Conf. Denver, CO (USA); 2014.
URL:doi:10.1109/PVSC.2014.6925612
Tamizh Mani Mani, Kuitche Joseph. Research students of ASU-PRL. Failure and degradation
modes of PV modules in a hot dry climate: results after 12 to 26 years of field exposure. PV
module reliability workshop NREL; 2013. [26 February].
URL:doi:10.1109/PVSC.2014.6925626
Zagorska V, Ziemelis I, Ancevica L, Putans H. Experimental investigation of
photovoltaicthermal hybrid solar collector.Agron Res Biosyst Eng Spec 2012;Vol.1,pp.227–234.
Congedo PM, Malvoni M, Mele M, De Giorgi MG. Performance measurements of
monocrystalline silicon PV modules in South-eastern Italy. Energ Conver Manage 2013;Vol.68,
pp.1–10. URL:doi:10.1016/j.enconman.2012.12.017.
Eduardo C, Bedin J, Krauss R, Nelson Melegari S, Carlos Munhoz J. Performance of
monocrystalline and polycrystalline solar panels in a water pumping system in Brazil.
Renew Sustain Energy Rev 2015, Vol.51, pp.1610–1616. URL: doi: 10.1016/j.rser.2015.07.082
[9] Midtgard O.M, Sætre TO, Yordanov G, Imenes AG, Nge CL. A qualitative examination of
performance and energy yield of photovoltaic modules in southern Norway. Renew
Energy 2010, Vol.35, pp.1266–1274. URL:doi:10.1016/j.renene.2009.12.002
Abdelkader M.R, Al-Salaymeh A, Al-Hamamre Z, Sharaf F. A comparative analysis of the
performance of monocrystalline and multiycrystalline PV cells in semi-arid climate
conditions: the case of Jordan. Jordan J Mech Ind Eng 2010, Vol.4, pp.543–552.
Dolara A, S. Leva, G. Manzolini, Comparison of different physical models for
PV power output prediction, Sol. Energy 119 (2015) 83-99. doi:10.1016/j.solener.2015.06.017.
Wang M, Peng J, Luo Y, Shen Z, Yang H, Comparison of different simplistic prediction models
for forecasting PV power output: Assessment with experimental measurements, Energy 224
(2021) 120162. URL: doi: 10.1016/j.energy.2021.120162.
Муминов Р.А, Турсунов М.Н, Сабиров Х, Абдиев У.Б, Юлдошов Б.А, Абилфайзиев Ш.Н.
“Исследование влияния температуры на параметры фототепловых батарей в южных
регионах республики”. Альтернативная энергетика и экология №25_27. 40-47 стр. URL:
https://doi.org/10.15518/isjaee.2021.09.040-047
Мўминов Р.А, Турсунов М.Н, Сабиров Х, Юлдошов Б.А, Абилфайзиев Ш.Н.
Фототепловая батарея с коллектором из сотового поликарбоната” Узбекистан, Ташкент,
FAP № 01886 от 24.03.2022.
Абилфайзиев Ш.Н. Фотоэлектрик батареяга бириктирилган иссиқлик коллекторида
кечадиган физик жараёнларнинг математик модели. Тенденции развития физики
конденсированных сред. III Международной научной конференции, Узбекистан, Фeргана
(2023), Cт. 333-337.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Innovatsion texnologiyalar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.